Algorithm in decision making



  • One of the biggest problems in predictive modeling is the conflation between classic hypothesis testing with careful model specification vis-a-vis pure data mining.
  • “The key bottleneck is that most data comparison algorithms today rely on a human expert to specify what ‘features’ of the data are relevant for comparison.
  • there are many viable approaches to model building that leverage, e.g., Lasso, LAR, stepwise algorithms or “elephant models” that use all of the available information. The reality is that, even with AWS or a supercomputer, you can’t use all of the available information at the same time


(Source from




在下方填入你的資料或按右方圖示以社群網站登入: Logo

您的留言將使用 帳號。 登出 / 變更 )

Twitter picture

您的留言將使用 Twitter 帳號。 登出 / 變更 )


您的留言將使用 Facebook 帳號。 登出 / 變更 )

Google+ photo

您的留言將使用 Google+ 帳號。 登出 / 變更 )

連結到 %s

%d 位部落客按了讚: